(-

+foo()
-bar

Performance Regression Testing
Target Prioritization via
Performance Risk Analysis

Peng Huang, Xiao Ma, Dongcai Shen, Yuanyuan Zhou

University of California, San Diego
University of lllinois at Urbana-Champaign

http://cseweb.ucsd.edu/~peh003/perfscope

http://cseweb.ucsd.edu/~peh003/perfscope

Trend #1: Software evolving fast

[=
N H

[EY
o

Lines of code (in millions)

Date * data from
www.ohloh.net

Lines of code for MySQL over past 10 years grew from
~5 million to ~13 million!

Trend #1: Software evolving fast

& F &
A Avg. Rev. Per
Day

MySQL ~27
Chrome ~155
Linux ~170

The average revision rate can be =2 100 commits per day!

Trend #1: Software evolving fast

14

12 Avg. Rev. Per

10 Day
MySQL ~27

Chrome ~155

¥ S Linux ~170
2"

& 99 little bugs in the code. Broken functionality or

7 99 little bugs in the code. worse performance!
‘3\ Take one down, patch it around.

B 127 lttle bugs in the code...

Trend #2: Performance testing,
important but slow...

Upgrading MySQL 4.1 to 5.0 in a production e-
commerce website:

Although this is a performance issue, total page rendering
time in my web shop would increase from 1 second to 20
seconds for example if showing a decent amount of products
and prices on the same page. Therefore MySQL 5 is no good for
production until this bug is fixed. 3%

Trend #2: Performance testing,
important but slow...

f ostyreSOL
st o Category Test Suite

R Q@? autobench,Web
MysqQll &K Server Polygraph,SPECweb
Performance critical software Database pgbench,sysbench,DBT2
Compiler CP2K,Polyhedron,SPEC CPU
OS Imbench,Phoronix Test Suite

Performance regression testing benchmark

Trend #2: Performance testing,
important but slow...

ostyreSO) .
e Category Test Suite Per Run Cost

: g Web autobench,Web
| cee Server Polygraph,SPECweb
Database pgbench,sysbench,DBT2

Compiler CP2K,Polyhedron,SPEC CPU

OS Imbench,Phoronix Test Suite

Performance regression testing cost

Problem: Catch me (perf. regression) if
you can!

Doing [performance testing] between just
release kernelsmeans that there will be a two
monthlag betweenelling developers that
something pissedp performanceDoing it every
day (or at least aouple oftimes a week) will be
much more interesting. [.] Two months (or half
a year) later, andie haveabsolutelyno idea what
might have causedragressionFor example, that
2.6.2>2.6.8 changebviouslymakes pretty much
any developerjustgo | ' moelueg ot

-- Linus Torvalds

Current practices of perf. regression
testing

AAggregate testing

ADaily, weekly, per-release

APrioritize test cases
ADivide based on comprehensiveness and overhead
AMultiple levels

Our tool—PerfScope-in a nutshell

APrioritize perf. regression testing target with
Performance Risk Analysis

A Statically examine a code commit
A Conduct performance risk analysis

ALightweight, white-box
ANOT a performance bug detection tool

Our tool—PerfScope-in a nutshell

APrioritize perf. regression testing target with
Performance Risk Analysis

A Statically examine a code commit
A Conduct performance risk analysis

ALightweight, white-box
ANOT a performance bug detection tool

Outline

AUnderstanding real world performance regression
Issues

APerformance risk analysis design
Almplementation: PerfScope
AEvaluation

AConclusion

Performance regression study

AWhat do real world performance regression issues
look like?

Als there opportunity to statically analyze the
performance impact of code change?

Alf so, based on the real world issues, what static
analysis is needed?

Study subjects

Sors oo ot s

MySQL DBMS 50
PostgreSQL DBMS 25
Chrome Web Browser 25

Studied software of real world performance
regression issues

Categorizing problematic code changes

Foo()

{ Performance Performance
e regression
30_333) { Cost of do_add 1

0_add ; .
do_add : Execution frequency of do_add 1
e

}

Where the problematic change takes
place?

int bstream_rd_db_catalogue(...)
{
do {
if (bcat_add_item(cat, &ti.base.base) != BSTREAM OK)\ I
return BSTREAM_ERROR; \
} while (ret == BSTREAM_OK); \

\
} The new block calls an expensive l

int bcat_add_item(...) function. When indirectly executed,
t . inside a loop, it can incur 80 times,
switch (item->type) { slowdown /

case BSTREAM_IT_PRIVILEGE: P
Image_info::Dbobj *it1= info->add_db_object(...); ‘

} %
} \
backup::Image_info: :Dbobj* Backup_info::add_db_object(...) \
{ \
+ if (type == BSTREAM_IT_TRIGGER) { H
+ obs::0bjxtbl_obj=obs::find_table_for_trigger(...); -7

}

+
}

Where the problematic change takes
place?

bool test_if_skip_sort_order(...)

{

if (select_limit >= table_records

} | The new control flow can change
DBUG_RETURN(1); | |the function return value, which
} \ “ later affects whether an expensive
int create_sort_inam\(() [path (with firesort call) will be
{ % ‘ taken or not
if ((order != join-ggroup_list] ... &&
test_if_skip_sort_order(...))

DBUG_RETURN(Q) ;
table->sort. found_records=filesort(thd,
table, join->sortorder, ...);

What the problematic change
modifies?

Modified program elements MySQL | PostgreSQL

Expensive function call 21 (42%) 9 (36%) 16 (64%)
Performance sensitive condition 8 (16%) 6 (24%) 4 (16%)
Performance critical variable 6 (12%) 5 (20%) 2 (8%)

Others 15 (30%) 5 (20%) 3(12%)

What the problematic change
modifies?

bool test_if_skip_sort_order(.

{

}
{

int create_sort_inae§()

3
DBUG_RETURN(1);

— ————

if (select_limit >= table_records

e

The new control flow can change
the function return value, which
later affects whether an expensive

8 (16%) 6 (24%) 4 (16%)

path (with firesort call) will be
% taken or not
if ((order != join—{oup_hst [l ... &&
test_if_skip_sort_order(-

DBUG_RETURN(®) ;

table->sort. found_records=filesort(thd,

table, join->sortorder,

Y I

mmw Performance sensitive condition

What the problematic change
modifies?

uint make_join_readinfo(JOIN *join, ulonglong options)
{ i

for (i=join->const_tabl€s ; i < join->tables ; it+) {
JOIN_TAB *tab=join->join_tab+i;

tab->index=fId_shortest_key(table, ...);
; } \\\ The new logic prefers clustered
int join_read_first(JOIN_TAB\‘k\tab) m&gm;mm
- N | forcertain workioads.
if (!table->file->inited) \

table->file->ha_index_init(tab->index, tab->sorted);

Performance critical variable

6 (12%)

5 (20%)

2 (8%)

How a change impacts performance?

Type of performance impact MySQL PostgreSQL

Direct 34 (68%) 11 (44%) 12 (48%)

Via function return value 7 (14%) 7 (28%) 3(12%)

Via function parameter 5 (10%) 4 (16%) 1 (4%)

Indirect Via class member 1(2%) 1 (4%) 3(12%)
Via global variable 1(2%) 0 (0%) 1 (4%)

Others 2 (4%) 2 (8%) 5 (20%)

Outline

APerformance risk analysis design

Performance Risk Analysis (PRA)

AGoal: statically analyze code change’s risk in
incurring performance regression

ATwo pieces of information:
¢ Cost of changed operation
¢ Execution frequency of changed operation

Static cost model

class CostModel

protected.:
virtual
virtual
virtual

e

public:
virtual
virtual
virtual
virtual

{

unsigned
unsigned
unsigned

unsigned
unsigned
unsigned
unsigned

getArithmeticlnstrCost (e);
getMemoryOpCost (é) ;
getCallCost (é) ;

getinstructionCost (ée);
getBasicBlockCost (€) ;
getLoopCost (é) ;
getFunctionCost (é) ;

Static cost model

class CostModel

protected.:
virtual
virtual
virtual

e

public:
virtual
virtual
virtual
virtual

{

unsigned
unsigned
unsigned

unsigned
unsigned
unsigned
unsigned

getArithmeticlnstrCost (e);
getMemoryOpCost (é) ;
getCallCost (é) ;

getinstructionCost (ée);
getBasicBlockCost (€) ;
getLoopCost (é) ;
getFunctionCost (é) ;

Execution frequency estimation

AStatic loop iteration count estimation
AlIf cannot determine -> frequent

ARecursive function -> frequent
Alnter-procedural

Risk matrix

Performance risk matrix given cost and frequency information

Outline

Almplementation: PerfScope

PerfScope architecture

patch

=== rigin
4+ new

@ .. e

J-EG =
Patch ‘ Mapper || Filter ‘ Performance

Parser Risk Analyzer

Code
repository

I.“-_H_ _-.f.l'
Performance Regression
Testing

PerfScope

AOn top of LLVM infrastructure
ACurrently support C/C++

AOpen sourced in
http://cseweb.ucsd.edu/~peh003/perfscope

http://cseweb.ucsd.edu/~peh003/perfscope

Outline

AEvaluation

Evaluation on studied perf. regression
commits

Problematic
. Recommended
Commits

MySQL 39 35
PostgreSQL 25 23
Total 64 58 (91%)

Evaluation on new perf. regression
commits

A600 new commits from 6 popular, large-scale
software

AObtained “ground truth” by running standard perf.
testing suite

| software__|__LOC

MySQL 1.2M Yes
PostgreSQL 651K Yes
GCC 4.6M No
V8 680K No
Squid 751K No

Apache 220K No

Evaluation on new pertf. regression
commits

PerfScopecanreduceat least78% of the performance regression
testing candidates and is still able talarm 95% of the risky ones.

Running time of PerfScope

MySQL 1.2M
PostgreSQL 651K
GCC 4.6M

V8 680K
Squid 751K

Apache 220K

Analysis Time
(Seconds)

235
194
289
344
34
9

Outline

AcConclusion

Limitations and future work

ACost modeling is simple
ANo offsetting for delete/replace changes

AMainly for CPU cost
ACan be extended for 1/0

ACombine with perf. test case prioritization

A Already know which code region is risky, associate with
coverage information.

Conclusion

ASoftware evolves fast that can inevitably worsen perf..

APerformance testing is an effective way to catch
performance regression but it is costly.

AWe propose performance risk analysis to prioritize
performance testing target.

AEvaluation shows our tool is light-weight and effective
in recommending performance-risky commits

Ahttp://cseweb.ucsd.edu/~peh003/perfscope

http://cseweb.ucsd.edu/~peh003/perfscope

Thanks!

The authors are unable to attend the conference and do Q&A
due to Visa issues L

If you have any questions, please reach Peng at
ryanhuang@cs.ucsd.edu

mailto:ryanhuang@cs.ucsd.edu

